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PENN_STfTE EM /EO/MET Data for
v Navy METOC Support

E&M (RF refraction) and EO (optical propagation) data products are

required for future systems. A new level in type and quality of

observational data isneeded for assimilation into numerical models.
Lidar profiles provide the best source for high quality
meteorological profiles and EM/EO data.

Model prediction capability is based upon constraints provided by
gridded fields of measured parameters.
High resolution data - both time and space - are needed to
constrain advanced numerical models as they are applied
to mesoscal e features -- tens to hundreds of kilometers.

“ Even if more capable models wer e available, our ability to suppl y

the data needed to drive them is deficient.”
Reference: 97 EM/EO Symposium, Edward Whitman (TD for Oceanographer of the Navy)




Our Research Goals . .

— Develop, demonstrate and use capabilities of Raman lidar
to foster a wide range of applications that support atmospheric
measurements, weather prediction, air quality monitoring,
and model development (initialization and assimilation).

Goal of thispaper . . .
show capability and status of Raman
lidar for providing measurements
required for Navy applicationsin
EM/EO/MET.

Presentation

What is Raman lidar?
Why Raman lidar?
Robust (signal ratios)
Single wavelength (no tuning)
Many parameters measured simultaneously
Continuous time sequence of data
Horizontal measurements — spatial, evaporation duct
Real-time data product in engineering units
What are the limitations of Raman lidar?
Small cross-section (~molecular/1000— moveto UV)
Need large laser for sufficient photon flux over background
What is the status?
Research on technique isrelatively complete
Cross-sections are known to < + 1%
Long life— 3-4 months continuous
Sensor is ready to marry with models '




Model Development and Application

Models provide the capability to input:
- physics and chemistry
- past climatology
and thereby alow extensions in time and space.
Y ou have seem many advances in models,
NOGAPS, COAMPS and NOWCAST — NRL Monterey
WRF - NCAR

CAUTION
The model output data products generally look the same
whether there has been any data input or not.

There needs to be a marriage between sensors and models
to be able to really provide the required:

- spatial continuity,

- time projection.

Raman Scatter in Air
(Nd:YAG 2nd Harmonic — 532 nm)
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Raman Lidar
Development

Five generations of Raman Lidar
18t GLEAM (1978)
2nd GLINT (1984)
3d LAMP(1990)

4 LARS (1994)
5t LAPS (1996)

Breadboard Research
I nstrument
Arcticto Antarctic

Testing at Point Mugu

.. Operational Prototype (ADM)
Testingon USNS Sumner
Advanced Development M odel




Three Raman Lidar Operating
Simultaneously at PSU

LAPS Instrument
The LAPS instrument \ gy
isfirst prototype for an —
Operationa’ SyStem % Course Adjustment
Rugged, weather-sealed, Beam Director
compact, semi-automated

Radar System

Control Systems,
Computer

Laser Power Supply

Heat Exchanger
Power Distribution
Environmental Control

Laser Transmitter — Continuum 9030 5 | Heat & Cool

Receiver
G2 cm Parabolic
Mirror Telescope




LAPS Instrument Characteristics and M easur ements

Transmitter

Continuum 9030 (30 Hz)
5X Beam Expander

600 mj @ 532 nm
120 mj @ 266 nm

Photon Counting

Receiver 61 cm Dia. Prime Focus Fiber optic pickup
Telescope
Detector 8 PMT Channels 528 + 530 nm — Temperature

660 + 607 nm — Water vapor
294 + 285 nm — Daytime Water Vapor
276 + 285 nm — Raman/DIAL

Data System

DSP 100 MHz

75 m bins (upgrade to 15 meter)

Safety System

Marine R-70 — X-Band

Protect near field

Property

Measurement

Altitude

Time - Resolution

Water Vapor

660/607 (H,O/N,)
294/285 (H,0/N,)

Surface to 5 km
Surface to 3 km

Night -1 min
Day & Night -1 min

Temperature

528/530 Rotational
Raman

Surface to 5 km

Night 10 to 30 min

Extinction 530 nm

530 nm Rotational Raman

Surface to 5 km

Night 10 to 30 min

Extinction 607 nm

607 nm N, 15t Stokes

Surface to 5 km

Night 10 to 30 min

Extinction 285 nm

285 nm N, 15t Stokes

Surface to 3 km

Day & Night 10 to 30 min

9

Ozone O,N, Surface to 2 km Day & Night - 30 min
(276/285)Raman/DIAL
PENNSTATE

EM/EO Requirementsfor
Refractivity and Extinction

EM requirement is for RF-refraction
m = TREPS, RPO,

Water Vapor = n =
Temperature index
of refraction

modified

index

RPOT, TPEM

EO requirement is for optical refraction/extinction

Upper Layer - Temperature Dew Point

Lower Layer - Aerosol Description & Visibility

= Optical Extinction

Lidar = Water Vapor & Temp = EM Propagation Conditions

Lidar = Optical Extinction & Temp = EO Propagation Conditions




EM — RF-refraction

 Index of refraction of air typically 1.00025 to 1.0004
e N units=(n- 1) *10° yielding 250 to 400 N units

* M units (modified refractivity) -> N units modified to
account for the curvature of earth
M =N + 0.157*z (z isthe altitude in meters)

Condition | N-Gradient (N/km)
Trapping dN/dz = -157
Superrefractive | -157 < dN/dz = -79 lae
Standard -79<dN/dz=0 78 < dM/dz = 157
Subrefractive dN/dz >0 dM/dz > 157
PENNSTATE
% RF Refractivity Variation

N=(n-1)x10° = 77.6 PIT + 3.73 x 10° &/ T?
e (mb) = (r P)/(r + 621.97)
P - surface pressure 1 - specific humidity T - temperature

T(K)~295K P(mb)~1000mb r~7g/kg N ~ 310

AN = (SN/5r) Ar + (3N/ST) AT + (3N/SP) AP
SN/ST ~ 6.7 SN/ST ~-1.35 SN/SP ~ 0.35

dN/dz = 6.7 dr/dz- 1.35 dT/dz + 0.35 dP/dz

Gradientsin water vapor are most important in determining
RF ducting conditions.




Water Vapor and Temperature
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Radar Refraction Effects

» U.S. Standard Atmosphere e Surface/Evaporative Duct
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Lidar on a Horizontal Path
for Evaporation Duct and Spatial Data

» Adapt vertical lidar instrument using a turning mirror for
horizontal propagation (-1 to 5 degrees elevation).

» Tag laser pulses with angle, mapping atmosphere with returns

horizontal

» High vertical resolution for water vapor and temperature
(<50cm).




Laps Simudation

Process Data

LIDAR System Paramatars

Simulation Paramaters
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Lidar on a Horizontal Path - Simulation

Comprehensive model for lidar on
vertical and horizontal paths

User may input a large array of
variables: Laser power, Pulse
frequency, visibility.

Horizontal Transmission considerably
smaller than vertical.
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Raman Lidar
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Aeroso| Scattering Extinction Profiles
EO for 0&/21156 03:00-03-59 UTC
F 4 - Philadelphia, PA
Optical Extinction I
Extnction #k 284 nm|
|+ Extiction & 530 nim
| = Exbnelion & 807 nin

Extinction is obtained directly
from the slope of the molecular
profiles, compared to their
expected hydrostatic gradient.
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Scattering from Clouds

Cloud scattering at visible and
ultraviolet wavelengths -
- multi-I toinfer size variation
- SH in region around cloud indicates
growth or dissipation

Cloud Micro-Physics

Theratio of visible and ultraviolet signals provides a
measure of the changing particle size in the edges of cloud.
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PENNSTATE
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Cloud Development

Atude (km)

Relatively dense clouds
(a ~57km! OD ~1-15)
can be measured to
observe formation

and growth/dissipation

of clouds.
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M eteor ology

Water Transfer into Cloud Base

Water vapor feeds directly from I I E! *1

the marine boundary layer into i
the base of clouds— example of “-—d T

convective cloud formation over - -
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Raman Lidar and

X 7 AIC Data provided by
UC Davis aircraft

Prof. John Carroll

Specific Humidity - 9/18/97 Specific Humidity - 9/18/97 Specific Humidity - 9/18/97
16:43 PDT - 60 Min Integration (Down Spiral) 21:06 PDT - 30 Min Integration
——Laps 20:35 PDT - 30 Min Integration
—— Airplane 4
4
35 =4 38
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5 15 s 2 <2
’ <15 15
1 T T T T T 1 :
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0 2 4 6 8 10 1 0 2 4 6 8 10 »
Specific Humidity (g/kg)

Specific Humidity (glkg) Specic Humidiy (gkg)

PENN STATE ALAPS
ﬁ Advanced Lidar Atmospheric Profile Sensor

ALAPS - Eye-safe ultraviolet lidar
Water vapor, temperature,
RF refractivity, optical extinction

Automated Operation - Real time data
- Small Size
- Self-calibration

16



PENNSTATE
ﬁ Lidar for the Future

LAMP — Breadboard demonstration of technology - 1990
LAPS— Operational Prototype (ADM) — 1996
Too large— Needs to be covert and eye-safe — Improved resolution

ALAPS - Engineering Model (EDM) — 200?
One-third size of LAPS (<1 m®)
Uses eye-safe ultraviol et wavelength
Higher speed electronics for improved resolution (1 GHz)
Fully automatic and self-calibrating
Replaces most needs for sonde systems with improved data
Readl time continuous data product in scientific/engineering units
Horizontal mode for evaporation duct and spatial data

EM Propagation - Radar Tracking, Detection Gaps, Communications
Lidar Water Vapor & Temperature = RF Refractivity

EO Propagation- Visihility, Surveillance, Aircraft OPS
Lidar Optical Extinction === Visual Range, Changing Conditions

PENNSTATE
ALAPS Raman Lidar (EDM)
* 3-D picture of EM/EO environment
« vertical profiles of meteorological properties

* automated operation with real time data
 eye-safe and covert

e

» self-calibrating optical system and fast electronics \ |

» small and self-contained, choice for future low observable ships ]
Design work and testing on LAPS since USNS Sumner tests

* upgrade to faster electronics - embedded microprocessor

* design to smaller size (~1/3) and self-contained

* design eyesafe, self-calibration

* investigations of optical extinction, air pollution

» more than 50 papers, 20 MSthesis and PhD dissertationsusing LAPS  for
testing, analysis, design, studies of atmospheric properties

ALAPS Summary

Raman Lidar is ready to be used prepared as primary instrument for
atmospheric profiling -- with improved data product, high spatial resolution,
and continuous data sequence. A key instrument for NOWCAST!
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